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EDGEWORTH-ALLOCATIONS IN AN EXCHANGE

ECONOMY WITH MANY TRADERSI

by

Karl Vind

1. INTRODUCTION

In recent papers, Scarf 151, Debreu [21, Debreu and

Scarf 131, and Aumann [I1, have defined and characterized

the core of-an economy. The economy is a pure trade economy,

i.e., an economy where a set of consumers possesses initially

certain quantities of the commodities. The trade is simply

a reallocation of the commodities. 2 We assume that the con-

sumers have preference relations. An allocation is by defi-

nition in the core or an Edgeworth-allocation if no group of

consumers can combine and reallocate their initial allocation

in such a way that all consumers in the group prefer the new

allocation.

When an allocation is an Edgeworth-allocation, it means

in particular that none of the individual consumers prefer

their initial allocation. At the other extreme it means that

the set of all consumers cannot reallocate in such a way that

1This paper was written while the author was a Rockefeller

fellow at the University of California, Berkeley. Professor
Debreu has made many useful comments to earlier versions.
Preparation of the manuscript was supported by the Office of
Naval Research under Contract ONR 222(77) with the University
of California.

2 Debreu and Scarf [3] also treat a case where production
is possible.
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everybody is made better off. An Edgeworth-allocation is

thus a special case of a Pareto-optimal allocation. Given

an Edgeworth-allocation, it is not only impossible for the

individual consumer or the set of all consumers to get a

better allocation, it is also impossible for any subset of

consumers to combine and get a better allocation by reallo-

cating this subset's initial allocation.

Scarf has "rediscovered" the problem after the original

treatment by Edgeworth and has proved [5] that if we let the

number ofoconsumers increase in a very special way, then the

set of Edgeworth-allocations will in the limit be the compet-

itive allocations. Debreu [2] and Debreu and Scarf [13] have

simplified the proof and extended the applicability of this

result. Aumann [1] has shown that, if we have a continuum

of consumers and all the individual consumers are unimportant,

then Edgeworth-allocations will, under certain conditions, be

competitive allocations.

In this paper we define a non-atomic exchange economy;

in intuitive terms this is an economy with no production and

many small traders. The set of values of the net trade for

all possible subsets of consumers in such an economy has some

very useful properties (Theorem 1); and the set of values of

the net trade for all possible subsets of consumers with

allocations prefered to any given allocation is a convex set

(Theorem 2)° Theorem 2 is a consequence of a general mathe-

matical lemma, which may have independent interest. This

lemma is stated and proved in an appendix.
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These surprisingly simple and general results are applied

in Theorem 3 to give a result comparable to Aumann's theorems.

In order to simplify the reading, there is on page 19 a

summary of the definitions and interpretations of the concepts

used.

II. THE ECONOMY

The economy consists of a set C of consumers and a

finite set of £ commodities. Some subsets of C will be

coalitions. Let XC denote the set of all possible coalitions.

We assume that this system of subsets _x has the following

properties:

(a) C e ; (the set of all consumers form a coalition).

(b) A c C and B & -, implies that A\B e -r- (if A and B

are two coalitions, the set of consumers in coali-

tion A but not in coalition B is also a coalition).

(c) A e -4- and B c:. implies that A. nB E _'C; (if A

and B are coalitions, the set of consumers in both

A and B also forms a coalition).

(d) A e -,C and B e /-' implies that A U B E X. (The

union of two coalitions is a coalition.)

(e) A e l for j = 1, 2, ... , implies that A Aj J ;
j=l

(the union of denumerably many coalitions is a coa-

lition).
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Whena system of subsets has the properties (a)-(d), it

is called a field. If it also has the property (e), it is

called a a-field. We will in the following assume that

_- is a a-field of subsets of C. (The properties listed do

not form a minimal set of axioms for fields or a-fields; e.g.,

property (c) is implied by the other properties.)

2 is the number of commodities, and 2 is the non-negative

orthant of R2 , the 2-dimensional Euclidean space. 2 will be

called the commodity space.

An allocation is a function defined on -C,-with values in

n. The function a = (a, a2,' ... , a,) gives to any coalition

A E -. an allocation a(A), which is a point in the commodity

space. We will include the following properties in the defi-

nition of an allocation:

(1) a is defined on _/- and has values in 2.

(2) a(A U B) = c(A) + a(B) for A n B = k. (For two

coalitions with no consumers in common, the amount

of commodities in thd allocation for the union is

the sum of the allocations.)

co 
00

(3) a(J Ai) = Z a(Ai) for Ai C A. = 0, i / j.
i=li=

(This is condition (2) extended to the union of

denumerably many coalitions.)

The set of all allocations will be denoted . Property

1 means that a is a vector-valued set function, 2 means that

a is additive, and 3 that a is a-additive. A is then the

set of all a-additive set functions defined on e-,with values
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in •. A a-additive set function with values in Q is a finite

vector-measure, so any a E is a finite vector measure. We.

will also need the set of all a-finite vector meqsures.A.

For.an a• e we may have ai(A) = + ', but in that.case there

will exist a partitioning of A; U Aj A such-that ai(Aj),<+0.

The initial allocation L is an element in A. In order

to avoid trivial cases we will assume Li(C) > 0 for i = 1, 2,

L. The economy we want to treat is a pure trade economy

so the final allocation must be a reallocation of the initial

allocation; i.e., if a is a final allocation, we must have

a(C) = L(C). The set of allocations a with a(C) = L(C) will

be denoted 6 and will be called the set of possible alloca-

tions.

A subset A E -<' is an atom with respect to a if a(A) / 0

and if A D B Eý C_ implies that a(B) = 0 or a(B) = a(A). The

subsets of A have either no allocation or the same allocation

as A. One way of expressing the intuitive idea that the

economy consists of many small consumers is to assume that C-

does not contain any atoms with respect to L. This assump-

tion implies that any coalition A with L(A) / 0 can be divided

into smaller coalitions with an initial allocation between

L(A) and 0. If -'C. does not contain any atoms with respect to

a, we call a non-atomic; the set of all non-atomic allocations

will be denoted ° The set of all non-atomic a-finite vec-

tor measures will be denoted A"(- 0 C- -10 ") The
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assumption that L e o will be part of the definition of a

non-atomic economy. An allocation a in both Io0 and 6 will

be non-atomic and have a(C) = L(C); the set of all such allo-

cations will be denoted ao.

From the definitions, we immediately get 8o = A-•o n ;

A _ LAO 60 'and A G D 30 '. For any a E 6E we have

a(A) cU (x 10 - x. Li(C)] for all A e .g'. For any a e

we will denote the range of a by /(a). /ý(a) = Ix Ix = a(A);

A e _-C) is for a E 6 a subset of U. When a and P are ele-

ments in A , (a,p) is a vector measure with values in R2e.

The range of this measure will be denoted /(j,3). The dif-

ference a(A)-L(A) is a vector in Rý, where the coordinates

indicate the net trade of coalition A when the allocation is

a. The range of the net trade is of great importance, so we

define /ý(;(-) = (XI x = a(A)-L(A); A e

The following lemma gives some properties of the sets

4(W), A(ap) and / 4 (a-L) for non-atomic allocations.

LEMMA 1. Let a, P and L be elements in AO, then t(),

V(a,p) and /•(a-L) are closed, convex and sym-

metric around -1 a(C), . (a(C),ý(C)) and

-g (a(C)-L(C)), respectively. 4(a) contains the

closed segment [O,a(C)1, V(a,p) contains the

closed segment [O,(a(C),p(C))], 4(a-L) contains

the closed segment [O,a(C)-L(C)].________________________________________________



-7-

Proof: That /(j), /(a,•) and /N(a-L) are closed and convex

follows from a theorem proved by Lyapunov (1940); see Halmos

[41, p. 421. The theorem can be formulated: The range of a

non-atomic (signed) vector-measure is convex and closed. a-L

is the difference between two finite measures and therefore a

signed measure. When a, P and L are non-atomic, (a,P) and

a-L are also non-atomic. (If A is an atom for (a,•), it is

an atom for a or 1.; if A is an atom for a-&, we can apply

Lemma B in the appendix with (a,L) = p. and a-i = V to get a

B C A with a(B)-b(B) = c(A)-i(A) and (a(B),L(B)) = (0,0), and

this is clearly a contradiction, so c-i is non-atomic.) There-

fore Lyapunov's theorem can be applied. 0 and C are elements

in •L and. /(a), 4(a,,) and /{(a-t) are convex; therefore,

the closed segments in the lemma are contained in /•(a),

(ja,p) and {(a-i), respectively.

If x = a(A) e 7ý(a), then a(C -\ A) = a(C)-x = y c ((a);

x+y = a(C) and /ý(a) is therefore symmetric around -1 a(C).

The proofs for A (a,p) and /{(a-L) are analogous.

For any measure defined on _XC. we can define the restric-

tion to A of the measure; if for instance a is an allocation,

then aA _ the restriction of a to A - is defined 'by

( (B) for B A and B Ea A (B) ==
not defined otherwise.

In some of the later proofs we need the following

Corollary. Lemma 1 applies also to the restrictions of a,

(a,p) and a-i to a coalition A (with C changed to A).



Proof. The.restriction of a finite non-atomic (signed) meas-

ure is also a finite non-atomic (signed.) measure, so the same

proof applies.

It-will be useful to have explicitly the properties of

/(a- )L for 'a C. 0

THEOREM 1. When a e 60, (a--) is closed, convex and sym-

metric around 0. ,(o-L) is contained in a

proper subvector-space if and only if 0 is not

an interior point in A(a-L).

Proof. The first part is a repetition of Lemma 1 with

a(C)-L(C) = 0. If x is interior in {(•-L), then -x is in-

terior (symmetry) and 0= - i (x-x) is interior (convexity)>

0 not interior implies therefore that no points are interior

in the convex set ,(c-L). This implies that /•(o-L) is con-

tained in a proper subvector space. The opposite implication

is obvious.

III. PREFERENCES

Usually preferences are expressed as a relation on

for each consumer. What we will do is to define a function
S on f xt with values in . To every ordered pair a, #,

we have a coalition A = S(o,3)o In the interpretation S(a,p)

is 'the set of consumers who prefer a to p or are indifferent

between them. The set S(a,p) will *be the union of the dis-

joint sets P(c,p) and I(c,p), where P(a,p) = S(U,P) \ S(P,a)
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and I(a,,) = S(a, ) n s(,•,) P(a,p) is the set of consumers

who prefer a, to , and I(a.,P) is the set of indifferent con-

sumerso We will also use the following notation

c>> P if A C P(a,c ) and A .
A =

The interpretation of this notation should be obvious.

IV. PREFERRED ALLOCATIONS

We will now define the functions and 6. (is de-

fined on J•x 4, and has values in the set of subsets of

= RV(+-I.) Precisely,

(a,A) =Ix e FI x = P(A)-L(A); P c all >> a) for A /

and 4(a,k) (03.

a(a,A) is the range, of the net trade of A, when we let

the allocation P vary over the set of allocations preferred

to a by coalition A. P(a,A) + (t(A)l is for the given coa-

lition A "the set of points above the coalition -indifference

surface through a(A)o"

The only difference between P(a,A) and o(a,A) is that

in the definition of Po we only allow P to vary over the'set

o of non-atomic y-finite vector-measures. Thus

(a,A) (x c I{ Ix = P(A)-L(A); P E ; > a)0 A-

for A / c and P.(a,o) = (0).

We will also need the following concepts:
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~(0) = AI&a, A) C x x P (A) - (A); e >>~;~ a;
A E C AA/0

a E

and (a) =U ro(a,,A) = (x x -(A)- ,(A); c AO >> » a;
AE AA/0

P(a) is the set of points preferred to a, in the sense

-that any point in P(a) is the net trade for a coalition A

with an allocation P preferred to a by A.

PO(a) is the same as P(a) except that we restrict the

allocations to the set of non-atomic allocations. If

x C o 0 (a), there exists a non-atomic P and an A EZL such

that x = P(A)-L(A) and P >> a.
A

V. ASSUMPTIONS ON THE PREFERENCES

In the following theorems we need one or more of the

following assumptions.

I a 1  A implies that

(a) S(a 1l,p) fn A = S(a 2 ,•) () A and

(b) S(p,aI) () A = S(Pa 2 ) () A for all P E

A A
a1 and a 2 are two different allocations but a 1 =a 2

means that they give the same allocation to every sub-

coalition of A. The assumption means that the prefer-

ences of A are independent of the values of the alloca-

tions outside A. The sets P(a,A) and 0o(a,A) are in-

dependent of the allocations a gives to coalitions in

the complement of A.



II If -(B) > P(B) for all B A A with P(B) ' 0 and > a,
A

then y-> a and > P.
A A

-/(B) > P(B) means yi(B) ? Pi(B) and y(B) / P(B). The

assumption corresponds to the usual assumption of mono-

tonicity of preferences. If allocation / gives at least

the same amount as P to all subcoalitions of A and more

of at least one commodity to all subcoalitions of A with

P(B) / 0, then A prefers y to P and to any allocation

worse than P. If x e F(a,A) and y > 0, then x+y c

P(a,A) and o(A)-L(A) + y E P(o(,A), (A .

III P(a,A) + (L(A)l for A ' • is open in 2.

This assumption corresponds to the assumption that the

set of points preferred to any given allocation is an

open set. The assumption means that if P is preferred

to a by A, then any commodity bundle in a neighborhood

of P(A) can be allocated to A in such a way that the

new allocation still is preferred to a by A.

The assumptions have some useful implications for the

concepts we have just introduced.

LEMMA 2. Let a E 0' and let Assumption II hold, then

Proof. We have to prove that •(a-L) is contained in the

adherence f(a) of f(a). But this is obvious, when we make
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the monotonicity assumption; if a(A)-&(A) is a point in

V(•-•), then all points a(A)-t(A)+y, where 0 # y E 2 is

the value of a net trade preferred by A to a.

LEMMA 3. Let a c 0 and let Assumptions I and II hold,

then P(a) P.W)

Proof, 6 ( is obvious.

o(a) (• d(). Assume that e Ag\Jo' with

P(A)-L(A) e 0'(a) and P >> a; we have to prove that ý(A)-L(A)
A

E Po(a). P has atom(s) in A and by Lemma B in the appendix.

it has therefore an atom Bo CA With a(Bo) = L(Bo) = 0; now

ý(B) E Q and can be "added" to the allocation f for the coa-

lition A \ B to give a new allocation / with -y(A \BB )

P(A \ Bo) + P(B) = P(A) and -y(B) > P(B) for all B C A K B0

with P(B) / 0. We know that 3 >> a, and we can therefore
A\B

0

apply Assumption II and get y >> a; but -(A\Bo)-L(A-Bo)
A\Bo0

P(A)-L(A) E 00(a). The same procedure can be applied to all

the atoms for P and we get finally a non-atomic allocation

with a preferred net trade equal to P(A)-L(A); P(A)-L(A) is

therefore also an element in VoP(a). In intuitive terms, we

have distributed the allocation for the atoms, over the non-

atomic part of the coalition, and this gives the non-atomic.

part a preferred allocation.

For the sets & 0 (a,A) and- Vo ), we are now able to

prove the basic'

THEOREM 2. Assumption I implies that •o(aA) and Po(()

a •re convex. (a A eC)
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Proof. We just have to check that •o(a,A) as a function

of A has the properties of the function F in lemma A in the

appendix.

1) Fo~ = (03 is clear.

2) •o(a,A U B) F (a,A).+ Fo(a,B) for'A 2B

This is a consequence of Assumption I.
00

15) •o (a, U Ai) = Z (ct,Ai), Ai n Aj = ¢ for i A j.
i=l

The only extra problem here is to make sure that the addition

on the right side is possible. o0 (a,A) is bounded from be-

low in each coordinate by -L(C), so this point is also obvious.

4) This follows from the a-additivity of the P's in

the definition of Po(a,A).

The non-atomicity of o is a consequence of the
non-atomicity of Ao in the definition of Fo'

VI. CLASSES OF ALLOCATIONS IN A NON-ATOMIC EXCHANGE ECONOMY

All the concepts defined and used can be derived from

the basic concepts C, t-, -C,, A, u and S. =

is a non-atOmic exchange economy with a preference function,.

if L is non-atomic. 68is the set of possible states of the

economy (an•a E 3 is an allocation with c.(C) L(C)).

In this section we will define two classes of alloca-

tions for the.ecbnomy -and prove a theorem givin~g relations

between these classes.
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A coalition A is blocking for an allocation a E if

there exist an allocation p e t such that P >> a and
A

P(A) = L(A). The meaning of this is that A can get f by re-

allocating their own initial allocation and that they prefer

p to a. The well-known concept of a Pareto-optimal allocation

is related to our definition in the following way: An allo-

cation is Pareto-optimal if C is not a blocking coalition.

A possible allocation is an Edgeworth-allocation if no

coalitions are blocking. The set of all Edgeworth-allocations

is called AE' By definition, LAE C 6.

If 0 G 0(a), there exists an A and a P such that

•(A)-•(A) = 0 and P >> a. There exists therefore a blocking
A

allocation if and only if 0 E P(a). This means that we can

characterize iE as (a E 8j 0 g P1(a) I.

An allocation a e 6 is a competitive allocation or a

Walras-allocation, if there exists a price-vector p E such

that pa(A) = pL(A) for all A E X1, and px > 0 for all x E P
9 (a).

The set of all Walras-allocations will be denoted 2W" AW
may, of course, be empty, and we will always have , 83.

pa(A) = pL(A) means in the interpretation that coalition A

can buy the amount a(A) for the money A gets by selling L(A).

px > 0 for all x c 00(a) means that no coalitions can buy an

allocation preferred to a if the price is p.

We will call E a positive exchange economy if L(A) / 0

implies i.i(A) # 0 for all i° If a coalition has an initial

allocation, it has a positive initial allocation of all com-

modities.



-15-

THEOREM 3" In an exchange econom2y we have <Z= •E•

a positive, non-atomic exchange economy, where

Assumptions I, II and III hold for the prefer-

ence function, we have W=

Proof. LAWC=+E Assume a c AW; px > 0 for x e P(a)

implies 0 / P(a) and therefore a E "

Remark. This is a very general result; we do not use any

assumptions on the preference function, and we do not use

the non-atomicity of L.

AW Z) AE' Assume a e AE' We will first prove that a E

By lemma B in the appendix, there exists an atom B with L(B):O

if a is not non-atomic. But because of Assumption II, C "'ý B

can get and would prefer to get the amount a(B) extra. There-

fore C \ B, where B is any atom for a with b(B) = 0, is a

blocking coalition. This means that a c 60" 0 00 (a)),

P(a) = Po(a) (Lemma 3) and 0
0 (a) is convex (Theorem 2);

there exists therefore a hyperplane H through 0 with normal

p / 0, such that px ? 0 for x e P(a). Lemma 2 implies that

,•(a-L) C F(a) and therefore px > 0 for x E /•(-L). The

symmetry of/(a-L) (Theorem 1) gives px = 0 for x e

If px > 0 for all x e P (a), we know that a e AW, and the

proof would be finished. Assume therefore px = 0 for some

x = P(A)-L(A) with P >j> a. We know from the assumption that

the initial allocation is positive [L(A) / 0 implies that

Li(A) / 01, that pp(A) = pL(A)./ 0. At least one pipi(A) is

therefore non-zero; by Assumption III any point in an F-

neighborhood of P(A) is the value of a preferred allocation

for A; and this gives the wanted contradiction with the fact

that px - 0 for all x c 6(a).
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APPENDIX

Proof of Lemma A and Lemma B

In this appendix we will state and prove two lemmas used

in some of the proofs. Lemma A gives some properties of "non-

atomic set-measures." This lemma appears to be extremely im-

portant in the investigation of the mathematical properties

of non-atomic economies. It car be applied to "preferred net

trade" sets, as in this paper, and also to consumption sets

and production possibility sets. Lemma B is more technical

and compares two vector-measures defined on the same a-field,

one of them non-atomic and the other with atoms.

Definitions. C is an arbitrary set with subsets A, B,

.- •C-is a a-field of subsets of C. R is the real line.

S= R U [+-I. F is a set-valued set function or a set-

measure, when F is a function defined on .iC with values in

the set of subsets of R with the properties

1) F(O) = (01.

2) F(A U B) = F(A) + F(B) for A 0B B

3) F(U Ai) =F(Ai) for A. C A 0 , i / J.
1

t) If +o c FV(A), there exist xi and Ai (i = 1,2,...)

with +- > xi E Fv.(Ai); CAi = A,, Ai ( A. = ' for

i / j and Zxi = +00.

We will first prove some relations between a set-measure

and sets of vector-measures. Let Abe.the Set of all signed

a-finite vectbr-measures with the property p(A) e F(A) for

all A E . ( (p. • (A) E F(A); A E:..) We will prove
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first some relations between a set-measure and sets of vector-
measures. Let be the set of all signed a-finite vector-

measures with the property f(A) c F(A) for all A e C.

(14= (pL I LL(A) E F(A); A E :.]). The set A has the property

that if ei E -then pE e /), 'where k.(B) = Z f(Ai P, B);

(C = CIAi, A1 (f Aj = A for i / j). On the other hand, it is

easily seen that any set with this property defines an F with

the properties 1), 2), 3) and 4).

We will assume that F(A) = (x e 71I x = 4(A); ji c

where Ais as defined above. This will be the case if F is

defined by F(A) = (ý(A) I E e °

Define / ao as [ E p, non-atomic]. We can

not be sure that F(A) = (x E 71 x = p(A); p. c ito]; i.e.,

we cannot be sure that for any A and any x e F(A) there exists

a non-atomic p. E with p.(A) = x. if F is such that in fact

F(A) = (x e R .x = p,(A) ; p. E ,01, we will call F non-atomic.

Expressed in other words, A is an atom for F if there exists

an x e F(A) such that x = 4(A) and p. e J implies that A is

an atom for p.; and F is non-atomic if there are no atoms; or

F is non-atomic if any x E F(A) (A • k&, x / 0) can beex-

pressed as the sum of x1 c F(Al) and x2 e F(A2), where

x1 / 0 / x 2 ,' Al A2  A and A.1/>A 2 A.

LEMMA A. Let F be'a non-atomic set-measure with F(A) =

(p.(A) I p. ý ' , then e F(A) is convex and F(A)

is convex for all A£<.

.. This assumption will, always hold if ( is a separable
a-field. A a-field'is separable if it is generated by a
countable family of subsets.
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I. Proof that ()F(A) is convex. Let x and x 2 be points

in UJF(A); property 4) implies that is enough to treat the

case xlV < +co; x 2 v < +o•, for v = 1, 2, ... , I. We must then

prove that Xx1 + (l-X)x 2 e U F(A) for 0 < X < 1. From the

relation between non-atomic set-measures and sets of non-

atomic vector-measures, we know that xI = p I(AI) and x 2 =

2(A 2) where pI and P2 E Ao. We know from Lyapunov's theo-

rem that the range of a non-atomic measure is convex. We

apply this theorem to •i' •2 and (ýl' •2) and this gives us

a B 1  A1 \ A2 , a B2 C A2 N. A1 , and a B3 C A1 f A2 , with

4I(B1) = 1Xt1(AI\ A2 ), P 2 (B2 ) = (1-X)1 2 (A 2 \ A1 ), and pI(B3 ) :

XjIt(AI ( A2 ) and P2 (B3) = XL2 (A, n A2 ). By defining B4 =

(A1 0 A2 ) \ B3 and B = B1 U B2 C B3 C/Bi4, we get L2 (B4 ) =

(I-X)"L2 (A, n A2 ). We can now define p, e &o by 4(A) -

3 pI(Af(BI C/B5 )) + 4 2 (Af0(B 2 U B4 )) + 43(A \ B), where 43 is

any p.3 E )do". Due to the property of do mentioned earlier,

S. Io because l, and 2 are. B is an element of L,
and p.(B) = 4 1(BI 3) +i p 2 B2 B B4 ) = XpI(A 1 ) + (I-X)p 2 (A 2 ) =

XxI + (l-X)x 2 , and the proof of the convexity of UF(A) is

finished.

II. Proof that F(A) is convex. If 0 E F(A) for all A, we

will have that F(A) = U F(A nB) (F(A fA) = F(A) and
BE

F(A n B) C F(A)). C/ F(A n B) is convex by I. (F(A nlB)
BE:L

as a function of B is a non-atomic set-measure.) Therefore

F(A) is convex for all A E J.
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If 0 , F(A) for some A, we choose any element po 0 Go

and define G(A) = (v(A) I v = .-po; p. E Jo]. We can now

apply the first argument to G(A) and as F(A) = G(A)+ (40(A)l

we will also in this case have that F(A) is convex for all A.

LEMMA B. Let p. and v be two signed vector-measures defined

on- ,(and assume that p. is non-atomic; then any

atom for v will contain an atom BO with 4(B) = 0.

Proof. Assume that BI is an atom for v and that p.(BI)=x/0.

Use Lyapunov's theorem to partition B1 = B2  B,1, where

p.(B7) = (B) 1x, v(B 2 ) v(B!) and v(B?) 0. Repeat22) 2 2) 2

the same procedure with B2 to get a B3, ... , Bi, ... with

p.(B) x and v(B (BI) and with t(Bi) = 1/2i-I x and
3 

3 00
v(Bi) = v(BI). Now B° = 1 Bi is the wanted atom. B 0 e

1t(B 0 ) = lim 2 -nx = 0 and v(Bo) = v(BI).

Summary of Definitions and Interpretations

Notation Definition Interpretation

C Arbitrary set Set of consumers

R 2-dimensional Euclidean
space

SNon-negative orthant of R Commodity space

o-field of subsets of C Set of coalitions

+Set of finite vector- Set of allocations
measures defined onX<L-

Set of u-finite vector-
measures defined on IC--
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Notation Definition Interpretation

te k and Li(C) > 0 for Initial allocation

i = 1, 2, ... ;,

(a E: CL (C) =(C)3 Possible allocations

AO (Ux E a non-atomic3.

oT [(a e Al a non-atomic]

U (x E ý2xi 5 Li(C)] Range of possible
allocations

S(() e x = a(A); A c dO) Range of allocation a

/{(ai6) [x L x=( ((A),f(A)I);A

4 (a-u) (xcR•l x=a(A)-t(A); AE:C} Range of net trade

S(a,6) S: ! X -+- The set of consumers
which prefers a to
or is indifferent.

P(a,•) S(a,6) \ S(6,a) The set of consumers
which prefers a to p.

I(a,•) S(,6) fl S(6,a) The set of consumers
which is indifferent.

a >> AC P(a,P); A / 0 All consumers in A
A prefer a to p.

rx•0 x=P(A)-t(A); Range of net trade
D (ajA) A a; ,S } for A/0 for A with preferred

(03 for A=O allocations.

(X:Fl ,x=p3(A)-L(A); Range of net trade

A >> a; PEZ. for A/0 for. A with preferred

(0) A for A=O non-atomic allocations.

Range of net trade
() a)(,A) with allocation

preferred to a.

Range of net trade
o(a) I (,A) with non-atomic allo-

A,,;A/0 cation preferred to a.
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Notation Definition Interpretation

E (a E 0 1 F(a) Set of Edgeworth-
allocations

(ae 6 opx for
W px > 0 for x e P(a), for Set of Wairas-

some p / 0] allocations

REFERENCES

[1] Aumann, R. J., "Markets with a continuum of traders I &

IIo" Econometric Research Program, Research Memorandum

Nos- 39 & 40, Princeton University, 1962.

[2] Debreu, G., "On a theorem of Scarf." The Review of Eco-

nomic Studies, Vol. 30, 1962-63.

[131 Debreu, G. and H. Scarf, "A Limit Theorem on the Core

of an Economy." International Economic Review, Sept.,

1963.

[4] Halmos, P. R., "The Range of a Vector-Measure." Bull.

Amer. Math. Soc., Vol. 4, 1948, pp. 416-421.

[51 Scarf, H., "An Analysis of Markets with a Large Number

of Participants." Recent Advances in Game Theory, The

Princeton University Conference, 1962.



BASIC DISTRIBUTION LIST

Nonr-222(77), NR-047-029

University of California

University of Chicago Columbia University
Statistical Research Center Dept. of Industrial Engineering
Chicago, Illinois New York 27, New York
Attn: Prof. Paul Meier Attn: Prof. Cyrus Derman

Stanford University University of Minnesota
Applied Math. and Stat. Lab. Dept. of Statistics
Stanford, California Minneapolis, Minnesota
Attn: Prof. G. J. Lieberman Attn: Prof. Ingram Olkmn

University of Minnesota Columbia University
Dept. of Statistics Dept. of Mathematics
Minneapolis, Minnesota New York 27, New York
Attn: Prof. I. R. Savage Attn: Prof. H. Robbins

Florida State University New York University
Dept. of Statistics Institute of Mathematical Sciences
Tallahassee, Florida New York 3, New York
Attn: Dr. R. A. Bradley Attn: Prof. W. M. Hirsch

Princeton University Cornell University
Dept. of Mathematics Dept. of Plant Breeding
Princeton, New Jersey Biometrics Unit
Attn: Prof. S. S. Wilks Ithaca, New York

Attn: Walter T. Federer
Columbia University
Dept. of Mathematical University of North Carolina

Statistics Statistics Department
New York 27, New York Chapel Hill, North Carolina
Attn: Prof. T.W. Anderson Attn: Prof. Walter L. Smith

University of California Rutgers - The State University
Dept. of Statistics Statistics Center
Berkeley I, California New Brunswick, New Jersey
Attn: Prof. J. Neyman Attn: Prof. Martin B. Wilk

University of Washington Michigan State University
Dept. of Mathematics Dept. of Statistics
Seattle 5, Washington East Lansing, Michigan
Attn: Prof. Z. W. Birnbaum Attn: Prof. Herman Rubin

Cornell University Brown University
Dept. of Mathematics Division of Applied Mathematics
Ithaca, New York Providence 12, Rhode Island
Attn: Prof. J. Wolfowitz Attn: Prof. M. Rosenblatt



ii

Harvard University Cornell University
Dept. of Statistics Industrial and Engineering
Cambridge, Massachusetts Administration
Attn: Prof. W. G. Cochran Ithaca, New York

Attn: Prof. Henry P. Goode
University of California
Management Sciences University of Wisconsin

Research Project Dept. of Statistics
Los Angeles 24, Calif. Madison, Wisconsin
Attn: Dr. J. R. Jackson Attn: Prof. G.E.P. Box

The Research Triangle Inst. Stanford University
Stat. Research Division Dept. of Economics
505 West Chapel Hill St. Stanford, California
Durham, North Carolina Attn: Prof. K. J. Arrow
Attn: Dr. M.R. Leadbetter

Institute of Mathematical
Columbia University Statistics
Dept. of Indust. Engr. University of Copenhage
New York 27, New York Copenhagen, Denmark
Attn: Prof. S.B. Littauer Attn: Prof. Anders Hald

University of Michigan Cowles Commission for Research
Dept. of Mathematics in Economics
Ann Arbor, Michigan Yale University
Attn: Prof. L. J. Savage New Haven, Connecticut

Attn: Prof. T. C. Koopmans
Carnegie Inst. of Technology
Grad. ,,ch. of Ind. Admn. Mass. Inst. of Technology
Scheriley Park Cambridge, Massachusetts
Pittsburgh 13, Penn. Attn: Dr. R. A. Howard
Attn: Prof. G.L. Thompson

Brown University
The George Washington Univ. Dept. of Mathematics
Dept. of Statistics Providence 12, Rhode Island
Washington, D.C. Attn: Prof. David Gale
Attn: Prof. Harold Bright

The John Hopkins University
Stanford University Dept. of Math. Statistics
Dept. of Mathematics 34th and Charles Streets
Stanford, California Baltimore 18, Maryland
Attn: Prof. S. Karlin Attn: Prof. Geoffrey S. Watson

Stanford University Northwestern University
Dept. of Statistics Dept. of Mathematics
Stanford, California Evanston, Illinois
Attn: Prof. C. Stein Attn: Dr. A. Charnes

Logistics Research Project Purdue University
The George Washington Univ. Dept. of Economics
707 22nd St, N.W. Lafayette, Indiana
Washington 7, D.C. Attn: Dr. Stanley Reiter
Attn: Dr. W. H. Marlow



iii-

Princeton University University of Maryland
Dept. of Mathematics Mathematics Department
Princeton, New Jersey College Park, Maryland
Attn: Prof. A. W. Tucker Attn: Prof. L. W. Cohen

University of California University of California
Dept. of Economics' Dept. of Engineering
Berkeley, California Los Angeles 24, California
Attn: Dr. Roy Radner Attn: R. R. O'Neill

Arthur D. Little, Inc. University of California
30 Memorial Drive Institute of Engrg. Research
Cambridge 42, Mass. Berkeley 4, California
Attn: Mr. J. C. Hetrick Attn: Prof. G. B. Dantzig

Case Institute of Technology Applied Math. and Stat. Lab.
Systems Research Center Dept. of Statistics
Cleveland, Ohio Stanford University
Attn: Dr. Raymond Nelson, Stanford, California

Acting Director Attn: Prof. H. Solomon

Case Institute of Technology The Inst. of Mngmt. Sciences
Operations Research Group Box 626
Cleveland, Ohio Ann Arbor, Michigan
Attn: Prof. R. L. Ackoff Attn: Prof. R. M. Thrall

IBM Corporation Cornell University
P.O.Box 218, Lamb Estate Dept. of Indust. and Eng. Admn.
Yorktown Heights, N.Y. Ithaca, New York
Attn: Dr. Ralph Gomory, Attn: Dr. Donald L. Iglehart

Research Center

Princeton University University of Minnesota
Dept. of Econ. and Soc. School of Bus. Admn.
Princeton, New Jersey Minneapolis, Minnesota
Attn: Prof. 0. Morgenstern Attn: Prof. Leonid Hurwicz,

Dept. of Economics



iv

BASIC DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

Head, Logistics and Mathematical
Statistics Branch

Office of Naval Research
Washington 25, D.C. 3 copies

Commanding Officer
Office of Naval Research Branch Office
Navy 100 Fleet Post Office
New York, New York 2 copies

ASTIA Document Service Center
Arlington Hall Station
Arlington 12, Virginia 10 copies

Defense Logistics Studies
Information Exchange

Army Logistics Management Center
Fort Lee, Virginia
Attn: William B. Whichard 1 copy

Technical Information Officer
Naval Research Laboratory
Washington 25, D.C. 6 copies

Commanding Officer
Office of Naval Research Branch Office
546 Broadway
New York 13, New York
Attn: J. Laderman 1 copy

Commanding Officer
Office of Naval Research Branch Office
1050 East Green Street
Pasadena 1, California
Attn: Dr. A. R. Laufer 1 copy

Bureau of Supplies and Accounts
Code OW
Department of the Navy
Washington 25, D.C. 1 copy

Institute for Defense Analyses
Communications Research Division
von Neumann Hall
Princeton, New Jersey 1 copy


